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Abstract

Since a large number of clustering algorithms exist,
aggregating different clustered partitions into a single
consolidated one to obtain better results has become an
important problem. We propose a new algorithm for
clustering ensemble based on spectral clustering. We
also propose a criteria along with this algorithm, for
the detection of cluster numbers. Our algorithm can
determine the number of clusters more accurately with
less volatility, and therefore can deduce a better com-
bined clustering result. Experimental results on both
synthesis and real data-sets show the capability and ro-
bustness of our approach.

1. Introduction

Clustering is an important approach of unsupervised

learning and large quantities of clustering algorithms

exist [4, 7]. However, no single one is versatile to all

kinds of data-sets, and they also suffer from some kinds

of problems, such as dependence on initializations and

volatility of results. Inspired by sensor fusion and clas-

sifier combination, clustering ensemble came into birth,

for the sake of overcoming these drawbacks and im-

proving the performance. This process can be simply

described as below: given a variety of clusterings on a

certain data-set, the manipulation will combine the in-

puts to a single consolidated partition.

Some work has been done in this new field [1, 2,

3, 5, 8, 9]. Generally speaking, the process of clus-

tering ensemble consists of three steps: (1) Clustering
Representation, establishing models to represent parti-

tion labels, (2) Representation Combination, combing

all these representations by a certain method, and (3)

Combined Representation Repartition, applying rela-

tive algorithms to partition the data-set on the combined

representation for clustering ensemble.

Clustering representation is an important step, and

0-1 affinity matrix is a popular method in previous re-

searches. For a clustering on a data-set with n samples,

its corresponding affinity matrix is an n×n symmetrical

binary matrix. The value 1 means that corresponding

pair are clustered into the same cluster, while 0 denotes

that they are divided into two different groups. Mean of

all these affinity matrices is defined as co-association
matrix. Partition algorithms, such as MST in Evidence
Accumulation (EA) [1, 2, 3] and METIS in Cluster-
based Similarity Partitioning Algorithm (CSPA) [8], are

then conducted on the co-association matrix for the final

combined partition.

In this paper, we propose a new algorithm for cluster-

ing ensemble also based on these 0-1 affinity matrices.

Our contributions lie in two aspects: (1) Referring to the

characters of the 0-1 affinity matrix, we suggest a new

criteria for determining the number of clusters in the

combined partition. It works by finding out the dom-

inating eigenvalues of the co-association matrix. (2)

Since the co-association matrix measures pairwise cor-

relations of the data-set, the repartition on it complies

with the framework of spectral clustering. Thus, we ap-

ply spectral clustering to the step of repartition, with the

number of clusters determined by new criteria as input.

We call this algorithm Spectral Aggregation (SA).

The rest of this paper is structured as follows: In sec-

tion 2, we describe the proposed Spectral Aggregation
algorithm for clustering ensemble and the criteria for

determining the numbers of clusters. In section 3, ex-

perimental results on both synthetic and real data-sets

are shown and analyzed. Finally, section 4 gives a con-

cise conclusion.

2 Spectral Aggregation

We begin our discussion about SA by introducing

our notation: Let X = {x1, x2, · · ·, xn} be a data-

set, with |X| = n. C(p) = {c(p)
1 , c

(p)
2 , · · ·, c(p)

n } de-

notes the partition label from the p-th clustering result,

where p = 1, 2, · · ·, d. There, c
(p)
i means that in the p-th
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Figure 1. Example of Overall Procedure for Clustering Aggregation

clustering, the sample xi is partitioned into the c
(p)
i -th

cluster. As a result, the process of clustering ensemble

can be described as follows: given a series of partition

labels, i.e., C = {C(p)}d
p=1, the combined clustering,

P = {p1, p2, · · ·, pn}, will be determined and output.

2.1 Algorithm Procedure

As we’ve talked previously, the 0-1 affinity matrix

is a common approach for clustering representation.

There, we set A(p) to denote the affinity matrix created

from the clustering C(p). Then we have:

A(p)(xi, xj) =

{
1, c

(p)
i = c

(p)
j , (1)

0, c
(p)
i �= c

(p)
j . (1′)

Mean of all A(p) is marked as Ψ(X, C) and can be

regarded as a combination of all these pairwise correla-

tions provided by C:

Ψ(X, C) =
1
d

d∑
p=1

A(p). (2)

Ψ is actually also an affinity matrix, and all its el-

ements are continuous values between 0 and 1. The

closer Ψ(xi, xj) to 1, the more original clusterings put

them into the same cluster, and the stronger bond this

pair have, and vice versa. This procedure is demon-

strated in Figure 1 by a simple example.

Now, we have Ψ(X, C) describing pairwise correla-

tion of the whole data-set. By repartitioning X on Ψ we

can get a new clustering, which can be acknowledged as

the combination of all given clusterings. In actual fact,

the process of partitioning samples by its affinity ma-

trix conforms to the framework of spectral clustering,

and therefore we suggest relevant approaches be used

here for clustering ensemble. After getting Ψ(X, C),
the subsequent procedure can be carried out as intro-

duced by [6].

2.2 Determination of Cluster Number

There, we set {ψ1, ψ2, ···, ψn} to denote all eigenval-

ues of Ψ(X, C). They are already sorted in descending,

i.e., ψ1 > ψ2 > · · · > ψn. Before running the proce-

dure above to partition Ψ(X, C), the number of clusters

to divide X into, i.e. k, should be determined firstly. By

analyzing the 0-1 affinity matrix, we can find following

characters:

Observation 1: For any C(p) and its corresponding

A(p), the number of clusters determined by C(p)

is equal to the rank of A(p).

Observation 2: Numbers of samples clusters in C(p)

contain respectively equal to eigenvalues of A(p).

Take C(1) and A(1) in Figure 1 for example. The

data-set is partitioned into three clusters by C(1), two in

cluster 1, three in cluster 2, and other two in cluster 3.

Meanwhile, the rank of A(1) is just 3, and three eigen-

values are 2, 3 and 2. These two characters are easy to

prove in mathematics. We neglect the proof for short.

These observations reflect that eigenvalues of indi-

vidual 0-1 affinity matrix contain clustering informa-

tion, and Ψ is a combination of all these information.

We believe that each original clustering contains both

real information and noise. By combining them, the

dominating information are strengthened while noise is

partly offset. As a result, eigenvalues of Ψ is also a

joint of all the original clustering information, and can

be used to support the clustering ensemble.

In order to analyze the distributions of Ψ’s eigen-

values, we pick three data-sets for test: Iris, Image,

and Optical-Digit. They are all downloaded from UCI
Repository, and respectively contain 3, 7, and 10 natu-

ral clusters. For each data-set, we run K-means 50 times

with the number of clusters, k, randomly picked in the

range [max{Kreal − 5, 2},Kreal + 5]. Then, we com-

bine all these 50 clusterings for Ψ, get its largest 12
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Figure 2. Eigenvalues of Core Matrix

eigenvalues, and sort them in descending. Additionally,

we divide them by the trace of Ψ for standardization,

and calculate the cumulative proportions they dominate

orderly. Results are plotted in Figure 2.

The green horizontal line represents the proportion

of 0.8, and we can easily find that this threshold can help

to find out the largest few eigenvalues corresponding to

the natural number of clusters. As demonstrated pre-

viously, the largest eigenvalues contain the clustering

information while others are just noise. By distinguish-

ing them, the number of clusters can be determined. For

this task, we propose a new criteria, which defines the

dominating eigenvalues by finding the number of eigen-

values that firstly makes the cumulative proportions sur-

pass a given threshold. This criteria is formulated as

follows:

k = min
s

(
s∑

i=1

ψi > ε ·
n∑

i=1

ψi) (3)

In consequence, the overall procedure of SA can be

summarized as follows: (1) Transfer all given cluster-

ings C(p) into corresponding affinity matrices A(p) by

equation 1. (2) Calculate the combined representation

Ψ(X, C) by equation 2. (3) Determine the number of

clusters by the proposed criteria and apply an algorithm

of spectral clustering to Ψ(X, C).

3 Experimental Results

We have conducted extensive experiments to test

the quality of SA on both synthetic and real data-sets.
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Figure 3. Data-sets for Experiments

Among all clustering ensemble algorithms, EA is re-

ported to be the best by the experimental results shown

in [3]. In our experiments, we compared the proposed

algorithm with EA used in [3] to illustrate its effective-

ness.

In our experiments, we select nine data-sets. 3rings
and Cigar are 2D data-sets and shown in Figure 3, while

others are from UCI. There, the Ptrain and Ptest are

composed of the first 100 samples respectively from the

training and testing sets of Pen-digit. Dimensions of all

these data-sets range between 2 and 77, and real num-

bers of clusters range between 2 and 10. Besides, their

distributions vary in different modes and they are suit-

able to be used to test and compare the algorithms’ ca-

pabilities. These data-sets are also similar to those used

in previous studies [3].

We design the experiment as follows: for each data-

set, we firstly run k-means ten times with given num-

bers of clusters, K, as initialization. These ten parti-

tion labels are then transported to the process of clus-

tering ensemble as inputs. We run EA with both Sin-

gle Link (SL) and Average Link (AL), as well as SA
to aggregate clusterings. This process is repeated for

50 times, and we record their results. The param-

eter K in K-means is randomly picked in the range

[max{Kreal−5, 2},Kreal+5], where Kreal represents

the natural number of clusters in the data-set. Besides,

the threshold ε for the cluster number determination cri-

teria is set as 0.8.

For each run of clustering ensemble on every data-

set, we record the numbers of clusters detected by the

three approaches. After 50 cycles, we calculate their

means as well as standard deviation, which are shown

in Table 1. By referring to the real number of clusters

also revealed in this table, we can easily find that our

SA can detect a much closer number to the real number

than both EA with SL and AL. In addition, the numbers



Table 1. Statistic Results of 50 Runs

Average Numbers Standard Deviation Average Error Rates (%)
Data Real Num.

EA-S EA-A SA EA-S EA-A SA K-means EA-S EA-A SA

3rings 3 2.30 3.02 3.80 1.074 1.407 0.535 50.18 39.83 47.69 38.66

Cigar 4 2.88 2.08 3.94 1.118 0.444 0.956 38.48 40.29 48.81 36.06

Iris 3 2.40 2.04 3.00 0.535 0.283 0.700 31.76 32.00 33.13 31.19

Wbc 2 2.78 2.02 2.28 1.266 0.141 0.497 15.83 9.13 3.97 8.27

Opt 10 2.64 7.14 9.70 1.998 2.330 0.953 34.69 73.14 35.20 31.74

Wine 3 2.86 2.02 3.32 1.325 0.141 0.794 38.89 34.85 32.90 31.33

Image 7 5.92 3.40 7.40 3.779 1.654 1.010 51.59 55.14 61.98 49.13

Ptrain 10 3.76 7.66 9.52 3.061 2.752 0.886 36.81 66.78 36.78 36.62

Ptest 10 3.26 6.74 10.12 1.925 2.834 1.062 42.33 63.44 46.60 40.48

Avg. – – – – 1.787 1.332 0.821 37.84 46.07 38.56 33.72

output by SA also have averagely smaller standard devi-

ations than other two algorithms, which means that SA
performs more stably.

In addition, since we have the ground labels of all

these data-sets, we can calculate the error rates of each

combined clustering with the error measurement used

in [3]. There, we also calculate means of all 50 runs on

each data-set. Besides, we also record the errors of all

original clusterings generated by K-means and calculate

their means. All these average error rates are shown

in Table 1 as well. We can find that SA outperform

other ensemble algorithms, as well as K-means. Statis-

tic results also reveal that, our algorithm performs espe-

cially preeminently on data-sets containing more clus-

ters, such as Opt, Image, Ptrain and Ptest. Much more

accurate numbers of clusters, smaller standard devia-

tions, and much smaller average error rates are shown

in corresponding rows in Table 1.

4 Conclusion

In this paper, we have proposed a new algorithm for

clustering ensemble called Spectral Aggregation. This

algorithm is based on the 0-1 affinity matrix for clus-

tering representation, and then applies spectral cluster-

ing to the mean of all these affinity matrices. Besides,

in order to determine the number of clusters, we also

propose a new criteria by finding this average matrix’s

dominating eigenvalues on basis of the cumulative pro-

portions they contribute to. Experimental results show

that the new criteria can detect the number of clusters

more accurately and stably, and our algorithm can ob-

tain better combined clustering results.
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